Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Adv Mater ; 35(22): e2300380, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2268716

ABSTRACT

Currently, the global COVID-19 pandemic has significantly increased the public attention toward the spread of pathogenic viruses and bacteria on various high-frequency touch surfaces. Developing a self-disinfecting coating on a touchscreen is an urgent and meaningful task. Superlattice materials are among the most promising photocatalysts owing to their efficient charge transfer in abundant heterointerfaces. However, excess electronic defects at the heterointerfaces result in the loss of substantial amounts of photogenerated charge carrier. In this study, a ZnOFe2 O3 superlattice nanofilm is designed via atomic layer deposition for photocatalytic bactericidal and virucidal touchscreen. Additionally, electronic defects in the superlattice heterointerface are engineered. Photogenerated electrons and holes will be rapidly separated and transferred into ZnO and Fe2 O3 across the heterointerfaces owing to the formation of ZnO, FeO, and ZnFe covalent bonds at the heterointerfaces, where ZnO and Fe2 O3 function as electronic donors and receptors, respectively. The high generation capacity of reactive oxygen species results in a high antibacterial and antiviral efficacy (>90%) even against drug-resistant bacteria and H1N1 viruses under simulated solar or low-power LED light irradiation. Meanwhile, this superlattice nanofilm on a touchscreen shows excellent light transmission (>90%), abrasion resistance (106 times the round-trip friction), and biocompatibility.


Subject(s)
Nanostructures , Nanostructures/chemistry , Electrons , Catalysis , Photochemistry/methods , Escherichia coli , Staphylococcus aureus , Influenza A Virus, H1N1 Subtype , Microbial Viability
2.
J Photochem Photobiol B ; 240: 112667, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2221051

ABSTRACT

Chloroquine (CQ) and hydroxychloroquine (HCQ) show good efficacy in the treatment of SARS-CoV-2 in the early stage, while they are no longer recommended due to their side effects. As an important drug delivery carrier, serum albumin (SA) is closely related to the efficacy of drugs. Here, the affinity behaviour of chloroquine and hydroxychloroquine with two SA were investigated through the multispectral method of biochemistry and computer simulation. The results showed that the intrinsic emission of both SA was quenched by CQ and HCQ in a spontaneous exothermic entropy reduction static process, which relied mainly on hydrogen bonding and van der Waals forces. The lower binding constants suggested weak binding between the two drugs and SA, which might lead to differences in efficacy and possibly even to varying side effects. Binding site recognition demonstrated that CQ preferred to bind to the two sites of both SA, while HCQ tended to bind to site I of SA. The results of conformational studies demonstrated that CQ and HCQ could affect the structure of both SA by slightly increasing the α-helix content of SA. Finally, we combine the results from experimental start with molecular simulations to suggest drug modifications to guide the design of drugs. This work has important implications for guiding drug design improvements to select CQ derivatives with fewer side effects for the treatment of COVID-19.


Subject(s)
COVID-19 , Chloroquine , Hydroxychloroquine , Humans , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Chloroquine/chemistry , Chloroquine/pharmacology , Computer Simulation , COVID-19 Drug Treatment , Hydroxychloroquine/chemistry , Hydroxychloroquine/pharmacology , Molecular Docking Simulation , Photochemistry , SARS-CoV-2
3.
J Hazard Mater ; 404(Pt B): 124082, 2021 02 15.
Article in English | MEDLINE | ID: covidwho-813688

ABSTRACT

Heterogeneous Fenton catalysts are emerging as excellent materials for applications related to water purification. In this review, recent trends in the synthesis and application of heterogeneous Fenton catalysts for the abatement of organic pollutants and disinfection of microorganisms are discussed. It is noted that as the complexity of cell wall increases, the resistance level towards various disinfectants increases and it requires either harsh conditions or longer exposure time for the complete disinfection. In case of viruses, enveloped viruses (e.g. SARS-CoV-2) are found to be more susceptible to disinfectants than the non-enveloped viruses. The introduction of plasmonic materials with the Fenton catalysts broadens the visible light absorption efficiency of the hybrid material, and incorporation of semiconductor material improves the rate of regeneration of Fe(II) from Fe(III). A special emphasis is given to the use of Fenton catalysts for antibacterial applications. Composite materials of magnetite and ferrites remain a champion in this area because of their easy separation and reuse, owing to their magnetic properties. Iron minerals supported on clay materials, perovskites, carbon materials, zeolites and metal-organic frameworks (MOFs) dramatically increase the catalytic degradation rate of contaminants by providing high surface area, good mechanical stability, and improved electron transfer. Moreover, insights to the zero-valent iron and its capacity to remove a wide range of organic pollutants, heavy metals and bacterial contamination are also discussed. Real world applications and the role of natural organic matter are summarised. Parameter optimisation (e.g. light source, dosage of catalyst, concentration of H2O2 etc.), sustainable models for the reusability or recyclability of the catalyst and the theoretical understanding and mechanistic aspects of the photo-Fenton process are also explained. Additionally, this review summarises the opportunities and future directions of research in the heterogeneous Fenton catalysis.


Subject(s)
Hydrogen Peroxide/chemistry , Iron/chemistry , Light , Wastewater , Water Pollutants, Chemical/analysis , Water Purification/methods , Catalysis , Disinfection , Humic Substances/analysis , Metal-Organic Frameworks/chemistry , Minerals/chemistry , Oxidation-Reduction , Photochemistry , Reactive Oxygen Species/chemistry , Wastewater/chemistry , Wastewater/microbiology , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/radiation effects
4.
ACS Sens ; 5(10): 3043-3048, 2020 10 23.
Article in English | MEDLINE | ID: covidwho-801107

ABSTRACT

Mass testing is fundamental to face the pandemic caused by the coronavirus SARS-CoV-2 discovered at the end of 2019. To this aim, it is necessary to establish reliable, fast, and cheap tools to detect viral particles in biological material so to identify the people capable of spreading the infection. We demonstrate that a colorimetric biosensor based on gold nanoparticle (AuNP) interaction induced by SARS-CoV-2 lends itself as an outstanding tool for detecting viral particles in nasal and throat swabs. The extinction spectrum of a colloidal solution of multiple viral-target gold nanoparticles-AuNPs functionalized with antibodies targeting three surface proteins of SARS-CoV-2 (spike, envelope, and membrane)-is red-shifted in few minutes when mixed with a solution containing the viral particle. The optical density of the mixed solution measured at 560 nm was compared to the threshold cycle (Ct) of a real-time PCR (gold standard for detecting the presence of viruses) finding that the colorimetric method is able to detect very low viral load with a detection limit approaching that of the real-time PCR. Since the method is sensitive to the infecting viral particle rather than to its RNA, the achievements reported here open a new perspective not only in the context of the current and possible future pandemics, but also in microbiology, as the biosensor proves itself to be a powerful though simple tool for measuring the viral particle concentration.


Subject(s)
Betacoronavirus/chemistry , Colorimetry/methods , Coronavirus Infections/diagnosis , Coronavirus Infections/virology , Nasal Mucosa/virology , Pharynx/virology , Pneumonia, Viral/diagnosis , Pneumonia, Viral/virology , Biosensing Techniques , COVID-19 , Gold , Humans , Membrane Proteins/chemistry , Metal Nanoparticles , Pandemics , Photochemistry , Polymerase Chain Reaction , SARS-CoV-2 , Specimen Handling , Spike Glycoprotein, Coronavirus/chemistry , Threshold Limit Values , Viral Envelope Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL